(+)-Hupeol, a Possible Non-basic Metabolite of the Lupine Alkaloid (–)-Cytisine in Chinese *Maackia hupehensis*[†]

1e J. Chem. Research (S), 1998, 196–197†

Yong-hong Wang,^a Hajime Kubo,^a Kimio Higashiyama,^a Hideaki Komiya,^a Jia-Shi Li^b and Shigeru Ohmiya^{*a}

^aDepartment of Synthetic Organic Chemistry, Institute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142, Japan ^bBeijing University of Traditional Chinese Medicine, 11, Beisan Huan Dong Ave, Beijing 100029, China

A novel product, named (+)-hupeol (1), which is regarded as an intermediate in the metabolism of the lupine alkaloids to non-basic constituents, has been isolated from Chinese *Maackia hupehensis*.

Japanese *Maackia* species (Leguminosae) are a group of plants which are interesting from the viewpoints of chemotaxonomy and biosynthesis because they accumulate unusual lupine alkaloids containing a pyrrolizidine or indolizidine ring such as maackiamine¹, tashiromine² and camoensidine³ together with common lupine alkaloids having a piperidine or quinolizidine ring. In the course of our studies on lupine alkaloids in *Maackia* plants, we isolated a novel constituent from *M. hupehensis* native to China. In this paper, we report the chemical characterization of the new constituent, named (+)-hupeol (1), and its biogenetic relationship with the typical lupine alkaloid (-)-cytisine (2), which is a main alkaloid (25% of the total base) of this plant.

The basic fraction (5.4 g) obtained from a 75% MeOH extract of the dry branches (1.2 kg) of *M. hupehensis*, collected in Jiang Xi province, China, in May, was subjected to repeated column chromatography on silica gel to yield (+)-hupeol (1; 8 mg), together with eight known lupine alkaloids, (-)-cytisine (2), (-)-*N*-methylcytisine, (-)-*N*-formylcytisine, (-)-epibaptifoline, (-)-lusitanine, epilupinine, *N*-3-oxobutylcytisine and rhombifoline.

(+)-Hupeol (1) was obtained as colourless needles from CH₂Cl₂-MeOH, $[\alpha]_D$ +32.3 (*c* 0.263, EtOH). The molecular formula, C₁₁H₁₃NO₃ [Found (EIMS): *m/z*, 207.0882. C₁₁H₁₃NO₃ requires *M*_r, 207.0894], contains one nitrogen and one hydrogen less and two oxygens more than that of the typical C₁₁ lupine alkaloid (-)-cytisine (C₁₁H₁₄N₂O). The IR spectrum of **1** showed an absorption band at 3300 cm^{-1} (OH). The mass spectrum of **1** revealed prominent fragment ions at m/z 160 (43%) and 146 (97) which are characteristic of lupine alkaloids having a 2-pyridone ring such as in **2**.⁴ The ¹H NMR spectrum (CD₃OD) of **1** exhibited two sets of signals in a 3:1 ratio, indicating that **1** was a 3:1 mixture of two structurally related compounds **1a** and **1b**, respectively, although **1** showed a single spot on TLC in several solvent systems.

The ¹H and ¹³C NMR spectra of **1a** and **1b** (Table 1) were assigned by analysis of the ¹H–¹H COSY and ¹H–¹³C COSY spectra. The similarity of the spectra of **1a** and **1b** with those of (–)-cytisine (2) (Table 1) suggested that both **1a** and **1b** had structures very similar to that of **2**. The hemiacetal structures for **1a** and **1b** were presumed from downfield shifts of the ¹H and ¹³C signals at the 11 and 13 positions compared with those of **2**. The C-9 signals of **1a** and **1b** were shifted downfield by 4–5 ppm, compared with those of **2**, while the C-7 signals were only slightly shifted, indicating that the hydroxy groups of **1a** and **1b** were both situated at the 11 position.

The stereochemistry of the hydroxy group of **1a** and **1b** was concluded to be axial (α) and equatorial (β), respectively, by comparison of the ¹³C signals at the 8, 10 and 13 positions of **1a** with those of **1b**. The ¹³C signals of C-8 and C-13 of **1a** were at a higher field than those of **1b**, and the signal of C-10 of **1b** was at a higher field than that

Table 1 ¹H and ¹³C NMR data for (+)-hupeol (1a and 1b) (CD₃OD) and (-)-cytisine (2) (CDCl₃)^a

Carbon No.	1a		1b		2	
	δ_{C}	δ_{H}	δ_{C}	δ_{H}	δ_{C}	δ_{H}
2	165.7		165.7		166.6	
3	116.9	6.45 (dd, J 9.0, 1.2)	116.9	6.45 (dd, J 9.0, 1.3)	117.8	6.45 (dd, J 8.8, 1.4)
4	141.5	7.49 (dd, J 9.0, 6.5)	141.5	7.49 (dd, J 9.0, 6.5)	142.1	7.29 (dd, J 8.8, 6.7)
5	107.8	6.28 (dd, J 6.5, 1.2)	107.8	6.28 (dd, J 6.5, 1.2)	108.9	5.98 (dd, J 6.8, 1.4)
6	152.8		152.8		153.4	
7	36.0	2.94 (m)	36.8	2.94 (m)	36.9	2.90 (m)
8 Η _β Η _α	19.9	2.52 (d, J 12.8) 1.81 (dd, J 12.8, 3.1)	25.5	2.09 (dd, J 11.9, 3.0) 2.11 (d, J 11.9)	27.3	1.96 (m) 1.96 (m)
9	34.6	2.35 (m)	33.6	2.35 (m)	29.7	2.32 (m)
10 Η _β Η _α	49.6	4.11 (d, J 15.8) 3.85 (dd, J 15.8, 6.8)	44.1	4.47 (d, J 16.0) 3.66 (dd, J 16.0, 6.8)	51.8	4.13 (d, J 15.3) 3.89 (dd, J 15.3, 6.7)
11 H_{β}^{n} H_{α}	97.2	5.12 (s)	97.9	4.91 (d, J 3.0)	53.6	3.11 (m) 3.07 (m)
$13 H_{\beta}$ H_{α}	66.8	3.43 (dd, <i>J</i> 10.8, 1.7) 4.37 (dd, <i>J</i> 10.8, 1.8)	73.3	3.82 (dd, J 11.3, 1.9) 3.93 (dd, J 11.3, 1.8)	54.6	3.03 (m) 3.09 (m)

^aJ Values in Hz.

*To receive any correspondence (*e-mail:* ohmiya@hoshi.ac.jp). †This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research (S)*, 1998, Issue 1]; there is therefore no corresponding material in *J. Chem. Research (M)*. of 1a, which could be explained by a γ effect of the hydroxy group (Scheme 1). Therefore, it was concluded that (+)-hupeol (1) was an inseparable equilibrium mixture (3:1) of hemiacetals 1a and 1b.

Fig. 1 A possible biosynthetic pathway for (+)-hupeol (1)

It is generally accepted in the biosynthesis of lupine alkaloids that tetracyclic sparteine-type alkaloids are first produced from three units of L-lysine and then metabolized oxidatively to tricyclic cytisine-type alkaloids *via* tetracyclic anagyrine-type alkaloids (Fig. 1).⁴ (–)-Cytisine (2) is considered to be the ultimate metabolite in the biosynthetic pathway of the lupine alkaloids. (+)-Hupeol (1) does not have a basic amino group, which is one of the important characteristics of the other alkaloids, but has a structure closely related to that of 2. Thus, (+)-hupeol (1) could be regarded as an intermediate in the metabolism of lupine alkaloids to non-basic compounds. To the best of our knowledge, this is the first example of such an intermediate in the biosynthesis of lupine alkaloids.

Investigation of the absolute stereochemistry of (+)hupeol (1) is currently being undertaken in our laboratories.

Experimental

Mps are not corrected. High- and low-resolution mass spectra were measured at 70 eV using a direct-inlet system. ¹H NMR (270 or 500 MHz) and ¹³C NMR (125 MHz) spectra were recorded using TMS as an internal standard.

Isolation of (+)-*Hupeol* (1).—The crude alkaloid fraction (5.5 g) obtained from the 75% MeOH extracts was subjected to chromatography on a silica gel column (Merck, type 60, 230–400 mesh; 410 g) with CH₂Cl₂–MeOH–25% NH₄OH (43:6:1), monotoring with TLC, to give 17 fractions. The fourth fraction (25 mg), the 1-rich fraction, was separated by silica gel column chromatography with CH₂Cl₂–AcOEt–MeOH (5:5:1) to yield (+)-*hupeol* (1; 8 mg), colourless needles from CH₂Cl₂–MeOH, $[\alpha]^{23}{}_{\rm D}$ +32.3 (c = 0.263, EtOH); m/z (EI) 207.0882 (M⁺, C₁₁H₁₃NO₃ requires 207.0894, 57%), 190.0886 (M⁺–OH, C₁₁H₁₂NO₂ requires 190.0868, 4), 189.0801 (M⁺–H₂O, C₁₁H₁₁NO₂ requires 189.0790, 17), 178.0859 (M⁺–CHO, C₁₀H₁₂NO₂ requires 178.0866, 20), 160.0761 (C₁₀H₁₀NO requires 160.0761, 43), 149.0842 (C₉H₁₁NO requires 149.0841, 68), 148.0771 (C₉H₁₀NO requires 148.0761, 100), 1246.0613 (C₉H₈NO requires 146.0607, 97), 138 (38), 117 (36), 93 (35); v_{max} (KBr)/cm⁻¹ 3300 (OH), 1650 (C=O).

Received, 8th December 1997; Accepted, 8th December 1997 Paper E/7/08797G

References

- 1 K. Saito, T. Yoshino, T. Sekine, S. Ohmiya, H. Kubo, H. Otomasu and I. Murakoshi, *Phytochemistry*, 1989, 28, 2533.
- 2 S. Ohmiya, H. Kubo, H. Otomasu, K. Saito and I. Murakoshi, *Heterocycles*, 1990, **30**, 537.
- 3 H. Kubo, S. Ohmiya and I. Murakoshi, *Can. J. Chem.*, 1994, 72, 214; S. Ohmiya, H. Kubo, Y. Nakaaze, K. Saito, I. Murakoshi and H. Otomasu, *Chem. Pharm. Bull.*, 1990, 39, 1123.
- 4 S. Ohmiya, K. Saito and I. Murakoshi, in *The Alkaloids*, ed. G. A. Cordell, Academic Press, New York, 1955, vol. 47, p 1.